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Figure 1. PLOT's paper with its title and authors information.

This paper is about adapting a large-scale pre-trained vision-language model, i.e., CLIP, to be applicable to
downstream datasets with prompting technique.
® This paper is published in ICLR 2023 conference and even got notable top 25% (spotlight) award.

® The authors are coming from many universities, such as Carnegie Mellon University, Tsinghua University, etc.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Motivation:
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Figure 2. The ideais thata single category, such as "Brambling", can be described from multiple complementary perspectives.

® Existing methods only learn a single prompt to represent a class. This is not enough as one image can be

described in different views.

® Directly implementing learnable multiple prompts is problematic because it will lead the model to learn similar

characteristics across prompts.

® Thus, we need novel method for aligning visual features and multiple textual prompts in a fine-grained manner.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Prompt Learning for Vision-Language Models:
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Figure 3. Model's architecture of Context Optimization (CoOp) and Conditional Context Optimization (CoCoOp).

® This topic is about how to automatically learns context prompts in vision-language models.
® There are in total two previous works mentioned in the paper, such as CoOp [1] and CoCoOp [2].
[

CoOp uses single learnable vectors as prompts [1], while CoCoOp add that context prompts with image

features to be better at domain generalization [2].

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Main Contributions:
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Figure 4. [llustration of PLOT's architecture (more detailed explanation will be delivered in the next slide).

® Introduce a novel method called Prompt Learning with Optimal Transport (PLOT) which applies optimal
transport (OT) to align local visual features and multiple textual prompts.
® Introduce a two-stage optimization strategy to first learn transport plan matrix, and then learning the

prompts.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Brief Recap of Optimal Transport Theory

® Optimal Transport (OT) theory is an optimization problem that deals with transforming one distribution
into another in the most efficient way (minimizing the total "cost" of this transportation).
® Specifically, the authors use Sinkhorn distance which introduces an entropy constraint for fast optimization.

® The algorithm above can be expressed as an optimization problem like below :

dor A (u,v|C) = miniilﬂnize <T,C > —\h(T)

subject to Tiy=u, T 1y, =v, T e foN

Notation meanings :

f is the feature points at distribution A.

g is the feature points at distribution B.

h(-) is an entropy.

A > 0 is a hyper-parameter.

u and v are the discrete probability vectors that sum to 1.

T is the transport plan, which is learned to minimize total distance.

C' is the cost matrix which each point denotes the cost between f and g.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Main Proposed Scheme :
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Figure 5. PLOT uses multiple prompts todefine each category and creates prompt features with a text encoder. Then, optimal
transport method measures the distance between prompts and visual features.

® Two-stage strategy consists of inner loop where the model aims to learn transport plan matrix, and outer
loop for learning prompts further based on distance from the supervised data.
® The use of a transport matrix allows each visual feature to be assigned to a weighted combination of

prompts, rather than a single prompt -> prompts have a broader semantic capacity.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



PLOT's Performance:
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Figure 6. The few-shotlearningresultson 11 datasets.
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The proposed method PLOT successfully outperform baseline techniques, such as CoOp, CoCoOp, and Linear

Probe in many different datasets.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



Review summary in OpenReview :

® This paper is overall well-structured and easy to follow.

® The motivations behind the work are clear and straightforward, and the proposed optimal transport-based
method aligns with these motivations.

® The paper includes comprehensive ablation studies and analysis, with clear illustrations of the pipeline.

Despite more complicated training, PLOT performs worse than previous prompting methods in some

datasets.

® The PLOT's performance compared with more recent work, e.g, CoCoOp, is not clear.

Conclusion : The paper proposes a technically sound and well-motivated approach, but more comprehensive

comparison with state-of-the-art works are needed.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023



My Review :

® The idea of using a diverse set of prompts to generate different text classifiers for a single class prediction is
brilliant.

® The results consistently outperform the CoOp model, demonstrating the benefits of using a large set of
prompts for better generalization to new classes.

® The paper lacks a discussion comparing their approach with other similar methods, such as CoCoOp.

® The paper also not discuss reasons on why the proposed model PLOT achieve worse performance in some

scenarios compared to the baselines.

Main source: [Chen’23;ICLR] Chen et al, “PLOT: Prompt Learning with Optimal Transport for Vision-Language Models”, ICLR, 2023
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